Beam Loading and Higher-band Longitudinal Wakes in High Phase Advance Traveling Wave Accelerator Structures for the Glc/nlc

نویسندگان

  • R. M. Jones
  • V. A. Dolgashev
  • Z. Li
  • T. O. Raubenheimer
چکیده

A multi-bunch beam, traversing travelling wave accelerator structures, each with a 5π/6 phase advance per cell, is accelerated at a frequency that is synchronous with the fundamental mode frequency. As per design, the main interaction occurs at the working frequency of 11.424 GHz. However, modes with frequencies surrounding the dominant accelerating mode are also excited and these give rise to additional modal components to the wakefield. Here, we consider the additional modes in the context of X-band accelerator structures for the GLC/NLC (Global Linear Collider/Next Linear Collider). Finite element simulations and field mode-matching models are employed in order to calculate the wakefield. Paper presented at the 2004 9th European Particle Accelerator Conference (EPAC 2004) Lucerne, Switzerland 5 9 July 2004 This work is supported by Department of Energy grant number DE-AC03-76SF00515 BEAM LOADING AND HIGHER-BAND LONGITUDINAL WAKES IN HIGH PHASE ADVANCE TRAVELING WAVE ACCELERATOR STRUCTURES FOR THE GLC/NLC R.M. Jones, V.A. Dolgashev, Z. Li, and T.O. Raubenheimer; SLAC, USA Abstract A multi-bunch beam, traversing travelling wave accelerator structures, each with a 5π/6 phase advance per cell, is accelerated at a frequency that is synchronous with the fundamental mode frequency. As per design, the main interaction occurs at the working frequency of 11.424 GHz. However, modes with frequencies surrounding the dominant accelerating mode are also excited and these give rise to additional modal components to the wakefield. Here, we consider the additional modes in the context of X-band accelerator structures for the GLC/NLC (Global Linear Collider/Next Linear Collider). Finite element simulations and field mode-matching models are employed in order to calculate the wakefield.A multi-bunch beam, traversing travelling wave accelerator structures, each with a 5π/6 phase advance per cell, is accelerated at a frequency that is synchronous with the fundamental mode frequency. As per design, the main interaction occurs at the working frequency of 11.424 GHz. However, modes with frequencies surrounding the dominant accelerating mode are also excited and these give rise to additional modal components to the wakefield. Here, we consider the additional modes in the context of X-band accelerator structures for the GLC/NLC (Global Linear Collider/Next Linear Collider). Finite element simulations and field mode-matching models are employed in order to calculate the wakefield.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Dispersion Compensation and Beam Loading in X-band Linacs for the Jlc/nlc§

The shape of an RF pulse is distorted upon propagating through an X-band accelerator structure due to dispersive effects. This distortion together with beam loading introduce energy spread between 192 bunches. In order to minimize this energy spread we modify the input RF pulse shape. The pulse propagation, energy gain, and beam loading are modelled with a mode-matching computer code and a circ...

متن کامل

Wire Measurement of Impedance of an X-band Accelerating Structure

Several tens of thousands of accelerator structures will be needed for the next generation of normal conducting linear colliders known as the GLC/NLC (Global Linear Collider/Next Linear Collider). To prevent the beam being driven into a disruptive BBU (Beam Break-Up) mode or at the very least, the emittance being significantly diluted, it is important to damp down the wakefield left by driving ...

متن کامل

Varying alpha/lambda in NLC Structures — BNS Damping and Emittance Growth

In this note we consider the effect of varying this iris opening in the NLC structures on the beam dynamics and the rf efficiency in the linac. Varying a/λ in NLC structures – BNS damping and emittance growth G. Stupakov and Z. Li SLAC, Stanford University, Stanford, CA 94309 In this note we consider the effect of the varying the iris opening a in the NLC structures on the beam dynamics and the...

متن کامل

Multi-band Dipole and Multipole Wakefields in Nlc Traveling Wave Accelerators Using a Wire Measurement Technique

Dipole wakefields in NLC (Next Linear Collider) structures have been measured with ASSET [1] and well predicted by a circuit model [2]. However, the experimental technique is both time-consuming and expensive. Here, we report on kick factor and synchronous frequency determination for 1 and higher order dipole bands for TW (Traveling Wave) accelerators via a wire measurement technique. This stan...

متن کامل

Review of Diagnostics for next Generation Linear Accelerators

New electron linac designs incorporate substantial advances in critical beam parameters such as beam loading and bunch length and will require new levels of performance in stability and phase space control. In the coming decade, e(and e+) linacs will be built for a high power linear collider (TESLA, CLIC, JLC/NLC), for fourth generation X-ray sources (TESLA FEL, LCLS, Spring 8 FEL) and for basi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004